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JULIEN VINBER
• Junior depuis plus de 20 ans
• Lead dev / Architect pour Maline Immobilier
• Un peu, mais plus trop organiser les Meetups
• Adorateur sataniste de Merise et CURL
• LinkedIn : @julienVinber

https://www.linkedin.com/in/julienvinber/
https://www.linkedin.com/in/julienvinber/


 ATTENTION
Il ne faut pas prendre tout ce que je vais dire pour

vérité absolue et immuable.

Ce que je vais présenter est un point de vue. À vous
d'en retirer ce dont vous avez envie.
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PETITS SONDAGES POUR
COMMENCER

• Qui a déjà eu des problèmes de performance
avec une Base de données ?

• Qui a déjà eu des problèmes de conception ?
• Qui a déjà eu des problèmes de consistance ?
• Qui a déjà été bloqué par la structure de la base

?
• Qui ne comprend pas pourquoi je pose ces

questions ?
4.5



Je m'avance en prédisant qu'à part des étudiants,
personne ne devrait avoir levé la main à la dernière

question.
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POURQUOI ?
 Cela marche.
 C'est simple.
 On peut faire à peu près tout avec.
 C'est ce que l'on a appris et que tout le monde

applique depuis 50 ans.
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PROBLÈMES :
 Quand on peut tout faire, on est souvent

mauvais partout.
 La complexité de l'écriture des règles de

gestion est exponentielle avec la complexité du
modèle.

 Dans les faits, les règles sont incomplètes, les
utilisateurs pouvant tout modi�er vont créer de
l'inconsistance.

 Plus c'est gros, plus cela sera lent.
 Modèle souvent rigide, et peu compatible avec

la notion l'évolution permanente. 10.5
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FACE À CE CONSTAT, JE VOUS PROPOSE UNE AUTRE FAÇON DE
VOIR :

CQRS ET EVENT SOURCING
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UNE AUTRE FAÇON DE VOIR CQRS
C'est le besoin qui pilote la technique.

Il peut y avoir autant de réponses techniques que
de besoins.
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Commande 1 Commande 2

BD
Commande

Query1 Query 2 Query 3

BD
Besoin 1

Data
Besoin 2

Commande Bus

Temporisation
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EVENT SOURCING
Capturez toutes les modi�cations apportées à l'état

d'une application sous la forme d'une séquence
d'événements.

https://martinfowler.com/eaaDev/
EventSourcing.html
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CONCRÈTEMENT :
LES "COMMAND"

• 1 besoin = 1 commande
• Toute commande DOIT être validée.
• 1 commande validée et complétée = 1 Event
• Les évents sont sauvegardés ET envoyés pour

traitement.
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CONCRÈTEMENT :
PRÉPARATION DES DATA COTÉ "QUERY"

• Des "dispatcher" reçoivent l'ensemble des
événements.

• En fonction du type d'évent, il appelle le bon
"handler".

• Les "handler" mettent à jour leurs bases de
données.
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CONCRETEMENT :
LES "QUERY"

• Accès aux data normales.
• Au détail presque les bases sont plus adaptées

au besoin...
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UN "EVENT"
Un event est la pour répondre à plusieurs

questions :

• Qui ?
• Quand ?
• Quoi ?
• Avec quoi ?
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 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.
 Grande tolérance à l'erreur.
 L'inconsistance n'est plus qu'un simple bug.
 Règles métiers simples à spéci�er.
 Pas besoin d'ajouter des exceptions dans le

code.
 Facile à s'adapter pour les problèmes de

performance.
 Par nature, le code est découpé et organisé.
 Possible de reproduire en local.
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INCONVÉNIENTS
 Di�cile de mettre cela en place après.
 C'est plus "naturel", mais moins intuitif.
 Le code est simple, mais l'architecture

complexe.
 Cette approche pose les bases, mais tout reste

à faire.
 Attendez-vous à devoir traiter des problèmes

que vous n'auriez pas eus sans.
 Problème du temps de déploiement si

reconstruction.
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CONSEILS
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CONSEILS
 Ne pas remettre à demain la qualité et le

refactoring.
 Prenez le temps de poser les bases.
 Tolérance 0 sur les bugs "handler".

23.3



UN PEU DE PRATIQUE
https://gitlab.com/julienVinber/addressbook-cqrs-

eventsourcing-symfony-demo
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