
CQRS / EVENT SOURCING PAR L'EXEMPLE.CQRS / EVENT SOURCING PAR L'EXEMPLE.CQRS / EVENT SOURCING PAR L'EXEMPLE.CQRS / EVENT SOURCING PAR L'EXEMPLE.CQRS / EVENT SOURCING PAR L'EXEMPLE.CQRS / EVENT SOURCING PAR L'EXEMPLE.
 - Meetup 22 novembre 2023 AFUP MontpellierJulien Vinber

1

https://www.linkedin.com/in/julienvinber/
https://www.linkedin.com/in/julienvinber/

2

JULIEN VINBER
• Junior depuis plus de 20 ans
• Lead dev / Architect pour Maline Immobilier
• Un peu, mais plus trop organiser les Meetups
• Adorateur sataniste de Merise et CURL
• LinkedIn : @julienVinber

https://www.linkedin.com/in/julienvinber/
https://www.linkedin.com/in/julienvinber/

 ATTENTION
Il ne faut pas prendre tout ce que je vais dire pour

vérité absolue et immuable.

Ce que je vais présenter est un point de vue. À vous
d'en retirer ce dont vous avez envie.

3

PETITS SONDAGES POUR
COMMENCER

4

PETITS SONDAGES POUR
COMMENCER

• Qui a déjà eu des problèmes de performance
avec une Base de données ?

4.1

PETITS SONDAGES POUR
COMMENCER

• Qui a déjà eu des problèmes de performance
avec une Base de données ?

• Qui a déjà eu des problèmes de conception ?

4.2

PETITS SONDAGES POUR
COMMENCER

• Qui a déjà eu des problèmes de performance
avec une Base de données ?

• Qui a déjà eu des problèmes de conception ?
• Qui a déjà eu des problèmes de consistance ?

4.3

PETITS SONDAGES POUR
COMMENCER

• Qui a déjà eu des problèmes de performance
avec une Base de données ?

• Qui a déjà eu des problèmes de conception ?
• Qui a déjà eu des problèmes de consistance ?
• Qui a déjà été bloqué par la structure de la base

?

4.4

PETITS SONDAGES POUR
COMMENCER

• Qui a déjà eu des problèmes de performance
avec une Base de données ?

• Qui a déjà eu des problèmes de conception ?
• Qui a déjà eu des problèmes de consistance ?
• Qui a déjà été bloqué par la structure de la base

?
• Qui ne comprend pas pourquoi je pose ces

questions ?
4.5

Je m'avance en prédisant qu'à part des étudiants,
personne ne devrait avoir levé la main à la dernière

question.

5

UN PEU DE CONTEXTE
Depuis toujours, on utilise fondamentalement 3

piliers pour la conception des bases de données :

6

UN PEU DE CONTEXTE
Depuis toujours, on utilise fondamentalement 3

piliers pour la conception des bases de données :

Merise

6.1

https://fr.wikipedia.org/wiki/Merise_(informatique)
https://fr.wikipedia.org/wiki/Merise_(informatique)

UN PEU DE CONTEXTE
Depuis toujours, on utilise fondamentalement 3

piliers pour la conception des bases de données :

Merise / SGBDR SQL

6.2

https://fr.wikipedia.org/wiki/Merise_(informatique)
https://fr.wikipedia.org/wiki/Merise_(informatique)
https://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es_relationnelle
https://fr.wikipedia.org/wiki/Structured_Query_Language
https://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es_relationnelle
https://fr.wikipedia.org/wiki/Structured_Query_Language

UN PEU DE CONTEXTE
Depuis toujours, on utilise fondamentalement 3

piliers pour la conception des bases de données :

Merise / SGBDR SQL CRUD

6.3

https://fr.wikipedia.org/wiki/Merise_(informatique)
https://fr.wikipedia.org/wiki/Merise_(informatique)
https://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es_relationnelle
https://fr.wikipedia.org/wiki/Structured_Query_Language
https://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es_relationnelle
https://fr.wikipedia.org/wiki/Structured_Query_Language
https://fr.wikipedia.org/wiki/CRUD
https://fr.wikipedia.org/wiki/CRUD

UN PEU DE CONTEXTE
Depuis toujours, on utilise fondamentalement 3

piliers pour la conception des bases de données :

Merise / SGBDR SQL CRUD

6.4

https://fr.wikipedia.org/wiki/Merise_(informatique)
https://fr.wikipedia.org/wiki/Merise_(informatique)
https://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es_relationnelle
https://fr.wikipedia.org/wiki/Structured_Query_Language
https://fr.wikipedia.org/wiki/Base_de_donn%C3%A9es_relationnelle
https://fr.wikipedia.org/wiki/Structured_Query_Language
https://fr.wikipedia.org/wiki/CRUD
https://fr.wikipedia.org/wiki/CRUD

POURQUOI ?

7

POURQUOI ?
 Cela marche.

7.1

POURQUOI ?
 Cela marche.
 C'est simple.

7.2

POURQUOI ?
 Cela marche.
 C'est simple.
 On peut faire à peu près tout avec.

7.3

POURQUOI ?
 Cela marche.
 C'est simple.
 On peut faire à peu près tout avec.
 C'est ce que l'on a appris et que tout le monde

applique depuis 50 ans.

7.4

GRAND PRINCIPE

8

GRAND PRINCIPE
1) LA CONCEPTION

8.1

GRAND PRINCIPE
1) LA CONCEPTION

Actor

Actor

Actor

Actor

Besoin 1

Besoin 2

Besoin 3

Besoin 4

Entity

+Attribute1
+Attribute2
+Attribute3

Entity

+Attribute1
+Attribute2
+Attribute3

Entity

+Attribute1
+Attribute2
+Attribute3

8.2

GRAND PRINCIPE

9

GRAND PRINCIPE
2)L'EXPLOITATION

9.1

GRAND PRINCIPE
2)L'EXPLOITATION

Entity

+Attribute1
+Attribute2
+Attribute3

Entity

+Attribute1
+Attribute2
+Attribute3

Entity

+Attribute1
+Attribute2
+Attribute3

Besoin 6

Besoin 7

Besoin 5

Besoin 8

SQL

CRUD

9.2

PROBLÈMES :

10

PROBLÈMES :
 Quand on peut tout faire, on est souvent

mauvais partout.

10.1

PROBLÈMES :
 Quand on peut tout faire, on est souvent

mauvais partout.
 La complexité de l'écriture des règles de

gestion est exponentielle avec la complexité du
modèle.

10.2

PROBLÈMES :
 Quand on peut tout faire, on est souvent

mauvais partout.
 La complexité de l'écriture des règles de

gestion est exponentielle avec la complexité du
modèle.

 Dans les faits, les règles sont incomplètes, les
utilisateurs pouvant tout modi�er vont créer de
l'inconsistance.

10.3

PROBLÈMES :
 Quand on peut tout faire, on est souvent

mauvais partout.
 La complexité de l'écriture des règles de

gestion est exponentielle avec la complexité du
modèle.

 Dans les faits, les règles sont incomplètes, les
utilisateurs pouvant tout modi�er vont créer de
l'inconsistance.

 Plus c'est gros, plus cela sera lent.

10.4

PROBLÈMES :
 Quand on peut tout faire, on est souvent

mauvais partout.
 La complexité de l'écriture des règles de

gestion est exponentielle avec la complexité du
modèle.

 Dans les faits, les règles sont incomplètes, les
utilisateurs pouvant tout modi�er vont créer de
l'inconsistance.

 Plus c'est gros, plus cela sera lent.
 Modèle souvent rigide, et peu compatible avec

la notion l'évolution permanente. 10.5

FACE À CE CONSTAT, JE VOUS PROPOSE UNE AUTRE FAÇON DE
VOIR :

11

FACE À CE CONSTAT, JE VOUS PROPOSE UNE AUTRE FAÇON DE
VOIR :

CQRS ET EVENT SOURCING

11.1

CQRS
ommand and uery esponsibility egregation

https://martinfowler.com/bliki/CQRS.html

12

https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html

UNE AUTRE FAÇON DE VOIR CQRS

13

UNE AUTRE FAÇON DE VOIR CQRS
C'est le besoin qui pilote la technique.

13.1

UNE AUTRE FAÇON DE VOIR CQRS
C'est le besoin qui pilote la technique.

Il peut y avoir autant de réponses techniques que
de besoins.

13.2

Commande 1 Commande 2

BD
Commande

Query1 Query 2 Query 3

BD
Besoin 1

Data
Besoin 2

Commande Bus

Temporisation

14

EVENT SOURCING

15

EVENT SOURCING
Capturez toutes les modi�cations apportées à l'état

d'une application sous la forme d'une séquence
d'événements.

https://martinfowler.com/eaaDev/
EventSourcing.html

15.1

https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html

CONCRÈTEMENT :
LES "COMMAND"

16

CONCRÈTEMENT :
LES "COMMAND"

• 1 besoin = 1 commande

16.1

CONCRÈTEMENT :
LES "COMMAND"

• 1 besoin = 1 commande
• Toute commande DOIT être validée.

16.2

CONCRÈTEMENT :
LES "COMMAND"

• 1 besoin = 1 commande
• Toute commande DOIT être validée.
• 1 commande validée et complétée = 1 Event

16.3

CONCRÈTEMENT :
LES "COMMAND"

• 1 besoin = 1 commande
• Toute commande DOIT être validée.
• 1 commande validée et complétée = 1 Event
• Les évents sont sauvegardés ET envoyés pour

traitement.

16.4

CONCRÈTEMENT :
PRÉPARATION DES DATA COTÉ "QUERY"

17

CONCRÈTEMENT :
PRÉPARATION DES DATA COTÉ "QUERY"

• Des "dispatcher" reçoivent l'ensemble des
événements.

17.1

CONCRÈTEMENT :
PRÉPARATION DES DATA COTÉ "QUERY"

• Des "dispatcher" reçoivent l'ensemble des
événements.

• En fonction du type d'évent, il appelle le bon
"handler".

17.2

CONCRÈTEMENT :
PRÉPARATION DES DATA COTÉ "QUERY"

• Des "dispatcher" reçoivent l'ensemble des
événements.

• En fonction du type d'évent, il appelle le bon
"handler".

• Les "handler" mettent à jour leurs bases de
données.

17.3

CONCRETEMENT :
LES "QUERY"

18

CONCRETEMENT :
LES "QUERY"

• Accès aux data normales.

18.1

CONCRETEMENT :
LES "QUERY"

• Accès aux data normales.
• Au détail presque les bases sont plus adaptées

au besoin...

18.2

UN "EVENT"
Un event est la pour répondre à plusieurs

questions :

19

UN "EVENT"
Un event est la pour répondre à plusieurs

questions :

• Qui ?

19.1

UN "EVENT"
Un event est la pour répondre à plusieurs

questions :

• Qui ?
• Quand ?

19.2

UN "EVENT"
Un event est la pour répondre à plusieurs

questions :

• Qui ?
• Quand ?
• Quoi ?

19.3

UN "EVENT"
Un event est la pour répondre à plusieurs

questions :

• Qui ?
• Quand ?
• Quoi ?
• Avec quoi ?

19.4

Commande

C
o
n
tr
o
le
r

Validation Droit

Validation Data

Traitement

Persistance

Propagation

Event

Event

Event
Event

Event
Event

Commande Bus

Commande

D
is
p
at
ch
er

Handler
Event 1

Handler
Event 2

Handler
Event 3

Handler
Event 4 D

is
p
at
ch
er

Handler
Event 3

Handler
Event 4

SGBDR 1 Base document 2

Query1 Query 2 Query 3

20

AVANTAGES

21

AVANTAGES

21.1

 Aucune perte d'information.

AVANTAGES

21.2

 Aucune perte d'information.
 Introduction de la notion d'intention.

AVANTAGES

21.3

 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.

AVANTAGES

21.4

 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.
 Grande tolérance à l'erreur.

AVANTAGES

21.5

 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.
 Grande tolérance à l'erreur.
 L'inconsistance n'est plus qu'un simple bug.

AVANTAGES

21.6

 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.
 Grande tolérance à l'erreur.
 L'inconsistance n'est plus qu'un simple bug.
 Règles métiers simples à spéci�er.

AVANTAGES

21.7

 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.
 Grande tolérance à l'erreur.
 L'inconsistance n'est plus qu'un simple bug.
 Règles métiers simples à spéci�er.
 Pas besoin d'ajouter des exceptions dans le

code.

AVANTAGES

21.8

 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.
 Grande tolérance à l'erreur.
 L'inconsistance n'est plus qu'un simple bug.
 Règles métiers simples à spéci�er.
 Pas besoin d'ajouter des exceptions dans le

code.
 Facile à s'adapter pour les problèmes de

performance.

AVANTAGES

21.9

 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.
 Grande tolérance à l'erreur.
 L'inconsistance n'est plus qu'un simple bug.
 Règles métiers simples à spéci�er.
 Pas besoin d'ajouter des exceptions dans le

code.
 Facile à s'adapter pour les problèmes de

performance.
 Par nature, le code est découpé et organisé.

AVANTAGES

21.10

 Aucune perte d'information.
 Introduction de la notion d'intention.
 On peut à tout moment TOUT reconstruire.
 Grande tolérance à l'erreur.
 L'inconsistance n'est plus qu'un simple bug.
 Règles métiers simples à spéci�er.
 Pas besoin d'ajouter des exceptions dans le

code.
 Facile à s'adapter pour les problèmes de

performance.
 Par nature, le code est découpé et organisé.
 Possible de reproduire en local.

INCONVÉNIENTS

22

INCONVÉNIENTS
 Di�cile de mettre cela en place après.

22.1

INCONVÉNIENTS
 Di�cile de mettre cela en place après.
 C'est plus "naturel", mais moins intuitif.

22.2

INCONVÉNIENTS
 Di�cile de mettre cela en place après.
 C'est plus "naturel", mais moins intuitif.
 Le code est simple, mais l'architecture

complexe.

22.3

INCONVÉNIENTS
 Di�cile de mettre cela en place après.
 C'est plus "naturel", mais moins intuitif.
 Le code est simple, mais l'architecture

complexe.
 Cette approche pose les bases, mais tout reste

à faire.

22.4

INCONVÉNIENTS
 Di�cile de mettre cela en place après.
 C'est plus "naturel", mais moins intuitif.
 Le code est simple, mais l'architecture

complexe.
 Cette approche pose les bases, mais tout reste

à faire.
 Attendez-vous à devoir traiter des problèmes

que vous n'auriez pas eus sans.

22.5

INCONVÉNIENTS
 Di�cile de mettre cela en place après.
 C'est plus "naturel", mais moins intuitif.
 Le code est simple, mais l'architecture

complexe.
 Cette approche pose les bases, mais tout reste

à faire.
 Attendez-vous à devoir traiter des problèmes

que vous n'auriez pas eus sans.
 Problème du temps de déploiement si

reconstruction.
22.6

CONSEILS

23

CONSEILS
 Ne pas remettre à demain la qualité et le

refactoring.

23.1

CONSEILS
 Ne pas remettre à demain la qualité et le

refactoring.
 Prenez le temps de poser les bases.

23.2

CONSEILS
 Ne pas remettre à demain la qualité et le

refactoring.
 Prenez le temps de poser les bases.
 Tolérance 0 sur les bugs "handler".

23.3

UN PEU DE PRATIQUE
https://gitlab.com/julienVinber/addressbook-cqrs-

eventsourcing-symfony-demo

24

https://gitlab.com/julienVinber/addressbook-cqrs-eventsourcing-symfony-demo
https://gitlab.com/julienVinber/addressbook-cqrs-eventsourcing-symfony-demo
https://gitlab.com/julienVinber/addressbook-cqrs-eventsourcing-symfony-demo
https://gitlab.com/julienVinber/addressbook-cqrs-eventsourcing-symfony-demo

